Российские универсальные энциклопедии
на главную страницу

   
источник статьи:
Большая Советская
Энциклопедия


Российские универсальные энциклопедии
Брокгауз-Ефрон и Большая Советская Энциклопедия
объединенный словник





Неорганическая химия, наука о химических элементах и образуемых ими простых и сложных веществах (кроме соединений углерода, составляющих, за немногими исключениями, предмет органической химии). Н. х. — важнейшая область химии науки о превращениях вещества, сопровождающихся изменениями его состава, свойств и (или) строения. Н. х. теснейшим образом связана, помимо органической химии, с др. разделами химии — аналитической химией, коллоидной химией, кристаллохимией, физической химией, термодинамикой химической, электрохимией, радиохимией, химической физикой; на стыке неорганической и органической химии лежит химия металлоорганических соединений и элементоорганических соединений. Н. х. ближайшим образом соприкасается с геолого-минералогическими науками, особенно с геохимией и минералогией, а также с техническими науками — химической технологией (её неорганической частью), металлургией и агрохимией. В Н. х. постоянно применяются теоретическ ие представления и экспериментальные методы физики.

  Историческая справка. История Н. х., особенно до середины 19 в., тесно переплетается с общей историей химических знаний. Важнейшие достижения химии конца 18 — начала 19 вв. (создание кислородной теории горения, химической атомистики, открытие основных стехиометрических законов) явились результатами изучения неорганических веществ.

  Уже в глубокой древности были известны металлы, которые либо встречаются в природе в самородном состоянии (Au, Ag, Cu, Hg), либо легко получаются (Cu, Sn, Pb) нагреванием их окисленных руд с углем, а также некоторые неметаллы (углерод в виде угля и алмаза, S, возможно As). За 3—2 тыс. лет до н. э. в Египте, Индии, Китае и др. странах умели получать железо из руд, изготовлять изделия из стекла.

  Стремление превратить неблагородные, «несовершенные» металлы в благородные, «совершенные» (Au и Ag) явилось причиной возникновения алхимии, госпо дствовавшей в 4—16 вв. н. э. Алхимики создали аппаратуру для химических операций (выпаривания, кристаллизации, фильтрования, перегонки, возгонки), которые и в наше время служат для разделения и очистки веществ; впервые получили некоторые простые вещества (As, Sb, Р), соляную, серную и азотную кислоты, многие соли (купоросы, квасцы, нашатырь) и др. неорганические вещества. В 16 в. металлургия, керамика, стеклоделие и др. производства, близко соприкасающиеся с Н. х., получили довольно широкое развитие, что видно из трудов В. Бирингуччо (1540) и Г. Агриколы (1556). В 1530-х гг. А. Т. Парацельс, которому были на опыте известны целебные свойства препаратов Au, Hg, Sb, Pb, Zn, положил начало ятрохимии применению химии в медицине. В 17 в. укоренилось деление веществ, изучаемых химией, на минеральные, растительные и животные (указанное в 10 в. арабским учёным ар-Рази), т. е. наметилось расчленение химии на неорганическую и органическую. В 1661 Р. Бойль опроверг учения о четырёх стихиях и трёх началах, из которых якобы состоят все тела, и определил химические элементы как вещества, не могущие быть разложенными на другие. В конце 17 в. Г. Шталь, развивая представления И. Бехера, высказал гипотезу, согласно которой при обжигании и горении тела теряют начало горючести — флогистон. Эта гипотеза господствовала вплоть до конца 18 в.

  В дальнейшем становлению Н. х. как науки послужили работы М. В. Ломоносова и А. Лавуазье. Ломоносов сформулировал закон сохранения вещества и движения (1748), определил химию как науку об изменениях, происходящих в сложных веществах, приложил атомистические представления к объяснению химических явлений, предложил (1752) деление веществ на органические и неорганические, показал, что увеличение веса металлов при обжигании происходит за счёт присоединения некоторой части воздуха (1756), Лавуазье опроверг гипотезу флогистона, показал роль кислорода в процессах обжигания и горения, конкретизировал понятие химического элемента, создал первую рациональную номенклатуру химическую (1787). В начале 19 в. Дж. Дальтон ввёл в химию атомизм, открыл кратных отношений закон и дал первую таблицу атомных весов химических элементов. Тогда же были открыты Гей- Люссака законы (1805—08), постоянства состава закон (Ж. Пруст, 1808) и Авогадро закон (1811). В 1-й половине 19 в. И. Берцелиус окончательно утвердил атомизм в химии. В середине 19 в. были сформулированы и разграничены понятия атома, молекулы и эквивалента (Ш. Жерар, С. Канниццаро). К тому времени было известно свыше 60 химических элементов. Проблему их рациональной классификации разрешило открытие в 1869 периодического закона Менделеева и построение периодической системы элементов Менделеева. На основе своих открытий Д. И. Менделеев исправил атомные веса многих элементов и предсказал атомные веса и свойства ещё неизвестных тогда элементов — Ga, Ge, Sc и др. После их открытия периодический закон получил всеобщее признание и стал прочной научной основой химии.

  В конце 19 — начале 20 вв. особое внимание химиков-неоргаников привлекли две малоизведанные области — металлические сплавы и комплексные соединения. Исследование полированной и протравленной поверхности стали при помощи микроскопа, начатое в 1831 П. П. Аносовым, было продолжено Г. К. Сорби (1863), Д. К. Черновым (1868), немецким учёным А. Мартенсом (с 1878). Оно было усовершенствовано, а также существенно дополнено методом термического анализа (А. Ле Шателье, Ф. Осмондом в 1887, английским учёным У. Робертс-Остоном — в 1899). В дальнейшем крупнейшие работы по исследованию сплавов с применением новой методики были выполнены Н. С. Курнаковым (с 1899), А. А. Байковым (с 1900) и их научными школами. Обширные исследования сплавов были проведены в Германии Г. Тамманом (с 1903) и его учениками. Теоретическую основу учения о сплавах дало правило фаз Дж. У. Гиббса. Систематические исследования комплексных соединений, предпринятые в 1860-х гг. К. Бломстрандом и датским учёным С. Йёргенсеном, были в 1890-гг. развиты А. Вернером, создавшим координационную теорию, и Н. С. Курнаковым. Особенно широко работы в этой области были поставлены в России и СССР Л. А. Чугаевым и его школой.

  На рубеже 19 и 20 вв. в истории Н. х. произошло крупное событие — были открыты инертные газы: Ar (Дж. Рэлей, У. Рамзай, 1894), Не (У. Рамзай, 1895), Kr, Ne, Xe (английские учёные У. Рамзай и М. Траверс, 1898), Rn (немецкий учёный Ф. Дорн, 1900), которые Д. И. Менделеев по предложению У. Рамзая включил в особую (нулевую) группу своей периодической системы элементов (впоследствии были включены в 8-ю группу). Ещё более значительным было открытие самопроизвольной радиоактивности урана (А. Беккерель, 1896) и тория (М. Склодовская-Кюри и независимо немецкий учёный Г. Шмидт, 1898), за которым последовало открытие радиоактивных элементов Po и Ra (М. Склодовская-Кюри, П. Кюри, 1898). Эти открытия привели к обнаружению существования изотопов, к созданию радиохимии и теории строения атома (Э. Резерфорд, 1911, Н. Бор, 1913, и др.; см. Атомная физика).

  Успехи ядерной физики позволили синтезировать трансурановые элементы, имеющие атомные номера от 93 по 105 (см. Актиноиды, Элементы химические, Ядерная химия). Работы по синтезу трансурановых элементов открыли новую эпоху в истории Н. х. Исследования в этой области ведутся в СССР, США, Франции, ФРГ и некоторых др. странах.

  Методы исследования. В Н. х. применяются два основных приёма исследования: препаративный метод и метод физико-химического анализа. Препаративный метод практиковался с древнейших времён. Его основу составляют проведение реакций между исходными веществами и разделение образующихся продуктов посредством перегонки, возгонки, кристаллизации, фильтрования и др. операций. Особенно распространён препаративный метод в химии комплексных соединений. Метод физико-химического анализа в основно м создан Н. С. Курнаковым, его учениками и последователями. Сущность метода заключается в измерении различных физических свойств (температур начала и конца кристаллизации, а также электропроводности, твёрдости и др.) систем из 2, 3 или многих компонентов. Полученные данные изображают в виде диаграмм состав-свойство. Их геометрический анализ позволяет судить о составе и природе образующихся в системе продуктов, не выделяя и не анализируя их. Физико-химический анализ указывает пути синтеза веществ, даёт научную основу процессов переработки руд, получения солей, металлов, сплавов и др. важных технических материалов. Физико-химический анализ признан во всём мире ведущим методом Н. х.

  Для современной Н. х. характерен необычайно обширный круг новых методов исследования строения и свойств веществ и материалов. С середины 20 в. основное внимание уделяется изучению атомного и молекулярного строения неорганических соединений прямым определением их структуры (т. е. взаимного расположения атомов в молекуле). Оно производится методами кристаллохимии, спектроскопии, рентгеновского структурного анализа, ядерного магнитного резонанса, ядерного квадрупольного резонанса, гамма-спектроскопии, электронного парамагнитного резонанса и др. Большое значение имеет определение важных для техники свойств и особенностей (механические, магнитные, электрические и оптические свойства, жаропрочность, жаростойкость, отношение к радиоактивному облучению и др.). Н. х. превратилась в такую науку о неорганических материалах, которая основывается преимущественно на данных о строении веществ на атомном и молекулярном уровнях.

  Успехи неорганической химии. Открытие трансурановых элементов, эфф ективное разделение (посредством хроматографии, экстрагирования и др.) редкоземельных и иных трудно разделимых элементов (например, платиновых металлов) на индивидуально-чистые, экономичное получение редких элементов и материалов из них с особыми свойствами или заданным комплексом свойств привели к качественным изменениям в Н. х. Необходимо также отметить прогресс в технологии получения высокочистых элементов и соединений; получение из них и применение монокристаллов с определёнными свойствами (например, пьезоэлектриков, диэлектриков, полупроводников, сверхпроводников, кристаллов для лазеров и др.) составило специальную ветвь промышленности. Особенно быстро развивается химия редких элементов. В 60-е годы возникла химия инертных газов, которые ранее считались неспособными к химическому взаимодействию; получены многие соединения Kr, Xe и Rn с фтором, окислы Xe и др.

  В современной Н. х. очень большое внимание уделяется изучению химической связиважнейшей характеристике любого химического соединения. С помощью физической аппаратуры удаётся как бы «видеть» химическую связь. Методы кристаллографии, порой весьма трудоёмкие, заменяются скоростными методами (с применением, например, автоматических дифрактометров в сочетании с ЭВМ). Это позволяет для неорганических соединений быстро определять межатомные расстояния (и оценить электронную плотность), на основании чего можно составить более полное представление о строении молекул и рассчитать их свойства. Ещё более подробные сведения о химической связи можно получить с помощью рентгеноэлектронной спектроскопии. Разработка новых физических методо в и интерпретация получаемых результатов требуют совместной работы химиков-неоргаников, физиков и математиков. На основе представлений и методов квантовой механики всё более успешно рассматриваются проблемы строения и реакционной способности химических соединений и вопросы химической связи (см. Валентность, Квантовая химия).

  Неорганические вещества и материалы используются в различных рабочих условиях, при интенсивном воздействии среды (газов, жидкостей), механических нагрузок и др. факторов. Поэтому важное значение имеет изучение кинетики неорганических реакций, в частности при разработке новых технологий и материалов (см. Кинетика химическая, Макрокинетика).

  Практ ические применения. Н. х. даёт новые виды горючего для авиации и космических ракет, вещества, препятствующие обледенению самолётов, а также посадочных полос на аэродромах. Она создаёт новые твёрдые и сверхтвёрдые материалы для абразивных и режущих инструментов. Так, использование в них компактного кубического бора нитрида (боразона) позволяет обрабатывать очень твёрдые сплавы при таких высоких температурах и скоростях, при которых алмазные резцы сгорают. Получены новые составы флюсов для сварки металлов; новые комплексные соединения, применяемые в технологии, сельском хозяйстве и медицине; новые строительные материалы, в том числе значительно облегчённые (например, на основе или с участием фосфатов), новые полупроводниковые и лазерные материалы, жаропрочные металлические сплавы, новые минеральные удобрения и многое другое. Н. х. удовлетворяет самые разнообразные запросы практики, весьма бурно развивается и принадлежит к важнейшим основам научн о-технического прогресса.

  Научные учреждения, общественные организации, периодические издания. До 1917 исследования по Н. х. велись в России лишь в лабораториях АН и вузов (горного, политехнического и электротехнического институтов в Петербурге, университетов в Петербурге, Москве, Казани, Киеве, Одессе). В 1918 начали свою деятельность основанные при АН в Петрограде институт физико-химического анализа (основатель Н. С. Курнаков) и институт по изучению платины и др. благородных металлов (основатель Л. А. Чугаев). В 1934 оба эти института и Лаборатория общей химии АН СССР объединены в институт общей и неорганической химии АН СССР (в 1944 ему присвоено имя Н. С. Курнакова). О др. институтах см. Химические институты научно-исследовательские. Проблемы Н. х. рассматриваются на конгрессах Международного союза теоретической и прикладной химии, который имеет секцию Н. х., и на с ъездах национальных химических обществ, в том числе Химического общества имени Д. И. Менделеева.

  Работы по Н. х. в 18—19 вв. публиковались (и продолжают публиковаться) в химических журналах, а также в изданиях национальной АН, университетов, высших технических школ и научно-исследовательских институтов. В связи с быстрым развитием Н. х. в 1892 в Германии был основан «Zeitschrift fur anorganische (с 1915 «... und allgemeine») Chemie». С 1962 в США выходит журнал «Inorganic Chemistry». В СССР работы по Н. х. печатались в основанных в 1919 «Известиях Института (с 1935 — Сектора) физико-химического анализа» и «Известиях Института (с 1935 — Сектора) по изучению платины и других благородных металлов». В 1956 оба издания объединены в «Журнал неорганической химии».

 

  Лит.: Классические работы. Менделеев Д. И., Основы химии, 13 изд., т. 1—2, М. — Л., 1947; Lavoisier A. L., Traité élémentaire de chimie, t. 1—2, P., 1789; Berzelius J. J., Lehrbuch der Chemie, 5 Aufl., Bd 1—5, Lpz., 1847—56.

  История. Джуа М., История химии, пер. с итал., М., 1966; Фигуровский Н. А., Очерк общей истории химии. От древнейших времен до начала XIX в., М., 1969; Кузнецов В. И., Эволюция представлений об основных законах химии, М., 1967; Соловьев Ю. И., Эволюция основных теоретических проблем химии, М., 1971; Развитие общей, неорганической и аналитической химии в СССР, под ред. Н. М. Жаворонкова, М., 1967; Тананаев И. В., Основные достижения неорганической химии за 50 лет Советской власти, «Журнал Всесоюзного химического общества им. Д. И. Менделеева». 1967, т. 12, № 5; Фигуровский Н. А., Открытие химических элементов и происхождение их названий, М., 1970; Partington J. R., A history of chemistry, v. 1, pt 1, L., 1970; v. 2—4, L. 1961-64.

  Справочники. Gmelin L., Handbuch der anorganischen Chemie, 8 Aufl., Syst.- Num. 1—70, В., 1924 (изд. продолжается); Mellor J. W., A comprehensive tre atise on inorganic and theoretical chemistry, v. 1—16, L., 1952—34; Pascal P., Nouveau traité de chimie minérale, t. 1—19, P., 1956—1963.

  Руководства и пособия для высшей школы. Некрасов Б. В., Основы общей химии, т. 1—2, М., 1974; Реми Г., Курс неорганической химии, пер. с нем., т. 1—2, М., 1963—66; Щукарев С. А., Лекции по общему курсу химии, т. 1—2, Л., 1962—64; Полинг Л., Общая химия, пер. с англ., М., 1974; Барнард А., Теоретические основы неорганической химии, пер. с англ., М., 1968; Дей М., Селбин Д., Теоретическая неорганическая химия, пер. с англ., 2 изд., М., 1971; Коттон Ф., Уилкинсон Дж., Современная неорганическая химия, пер. с англ., ч. 1—2, М., 1969.

  Монографии и сборники работ. Руководство по препаративной неорганической химии, под ред. Г. Брауера, пер. с нем., М., 1956; Физические методы исследования и свойства неорганических соединений, пер. с англ., М., 1970; Курнаков Н. С., Введение в физико-химический анализ, 4 изд., М. — Л., 1940; его же, Изб р. труды, т. 1—3, М., 1960—63; Аносов В. Я., Погодин С. А., Основные начала физико-химического анализа, М. — Л., 1947; Гринберг А. А., Введение в химию комплексных соединений, 3 изд., М. — Л., 1966; Вдовенко В. М., Современная радиохимия, М., 1969. См. также лит. при статьях, ссылки на которые даны в тексте.

  И. В. Тананаев, С. А. Погодин.








ЭнциклопедиЯ

© gatchina3000.ru, 2001-2012
при использовании материалов сайта, гиперссылка обязательна