|
|
источник статьи: Большая Советская Энциклопедия (БСЭ) |
Эллиптические интегралы, интегралы вида
где R (x, у) — рациональная функция х и Под Э. и. первого рода понимают интеграл
под Э. и. второго рода — интеграл где k — модуль Э. и., 0 < k < 1 (х = sin j, t = sin a. Интегралы в левых частях равенств (1) и (2) называются Э. и. в нормальной форме Якоби, интегралы в правых частях — Э. и. в нормальной форме Лежандра. При х = 1 или j = p/2 Э. и называются полными и обозначаются, соответственно, через и Своё назв. Э. и. получили в связи с задачей вычисления длины дуги эллипса и = a sin a, v = b cos a(a < b). Длина дуги эллипса выражается формулой где |