|
|
источник статьи: Большая Советская Энциклопедия (БСЭ) |
Положительно-определённая форма, выражение вида
где aik = aki, принимающее неотрицательные значения при любых действительных значениях x1, х2,..., xn и обращающееся в нуль лишь при x1 = х2 =... = xn = 0. Т. о., П.-о. ф. есть квадратичная форма специального типа. Любая П.-о. ф. приводится с помощью линейного преобразования к виду
Для того чтобы
была П.-о. ф. необходимо и достаточно, чтобы D1 > 0, …, Dn > 0, где В любой аффинной системе координат расстояние точки от начала координат выражается П.-о. ф. от координат точки. Форма
(где С понятием П.-о. ф. связаны также понятия: 1) положительно-определённой матрицы ||aik|| — такой матрицы, что
есть эрмитова П.-о. ф.; 2) положительно-определённого ядра — такой функции К (х, у) = для любой функции x(х) с интегрируемым квадратом; 3) положительно-определённой функции — такой функции f (x), что ядро К (х, у) = f (x - y) является положительно-определённым. Класс непрерывных положительно-определённых функций f (x) c f (0) = 1 совпадает с классом характеристических функций законов распределения случайных величин.
|