|
|
источник статьи: Большая Советская Энциклопедия (БСЭ) |
Однородное уравнение, уравнение, не меняющее своего вида при одновременном умножении всех (или только некоторых) неизвестных на одно и то же произвольное число. Во втором случае уравнение называется однородным по отношению к соответствующим неизвестным. Так, ху + yz + zx = 0 есть О. у. по отношению ко всем неизвестным, уравнение a0(x) y (n) + a1(x) y (n-1) + ... + an (x) y = 0, называемое линейным однородным дифференциальным уравнением, однородно по отношению к у, у',..., y (n-1), y (n). Уравнение у' = f (х, у), где f (x, y) = f (lx, lу) при любом l [f (x, y) — однородная функция со степенью однородности 0], называется дифференциальным уравнением, однородным по отношению к переменным x и у. Пример:
|