|
|
источник статьи: Большая Советская Энциклопедия (БСЭ) |
Навье — Стокса уравнения, дифференциальные уравнения движения вязкой жидкости (газа). Названы по имени Л. Навье и Дж. Стокса. Для несжимаемой (плотность r = const) и ненагреваемой (температура Т = const) жидкости Н. — С. у. в проекциях на оси прямоугольной декартовой системы координат (система трёх уравнений) имеют вид: Здесь t — время, x, у, z — координаты жидкой частицы, vx, vy, vz — проекции её скорости, X, Y, Z — проекции объёмной силы, p — давление, v = m/r — кинематический коэффициент вязкости (m — динамический коэффициент вязкости), Два других уравнения получаются заменой x на у, у на z и z на x. Н. — С. у. служат для определения vx, vy, vz, р как функций x, у, z, t. Чтобы замкнуть систему, к уравнениям (1) присоединяют уравнение неразрывности, имеющее для несжимаемой жидкости вид: Для интегрирования уравнений (1), (2) требуется задать начальные (если движение не является стационарным) и граничные условия, которыми для вязкой жидкости являются условия прилипания к твёрдым стендам. В общем случае (движение сжимаемой и нагреваемой жидкости) в Н. — С. у. учитывается ещё переменность r и зависимость m от температуры, что изменяет вид уравнений. При этом дополнительно используются уравнение баланса энергии и Клапейрона уравнение. Н. — С. у. применяют при изучении движений реальных жидкостей и газов, причём в большинстве конкретных задач ограничиваются отысканием тех или иных приближённых решений.
Лит. см. при ст. Гидроаэромеханика. С. М. Тарг.
|