|
|
источник статьи: Большая Советская Энциклопедия |
Счисление, нумерация, совокупность приёмов наименования и обозначения чисел. Наиболее совершенным принципом представления чисел является позиционный (поместный) принцип, согласно которому один и тот же числовой знак (цифра) имеет различные значения в зависимости от того места, где он расположен. Такая система С. основывается на том, что некоторое число n единиц (основание системы С.) объединяется в одну единицу второго разряда, n единиц второго разряда объединяются в одну единицу третьего разряда и т. д. Основанием системы С. может быть любое число, большее единицы. К числу таких систем относится современная десятичная система С. (с основанием n = 10). В ней для обозначения первых десяти чисел служат цифры 0, 1,..., 9 (см. Десятичная система счисления). Несмотря на кажущуюся естественность такой сис темы С., она явилась результатом длительного исторического развития. Возникновение десятичной системы С. связано со счётом на пальцах. Имелись системы С. и с другим основанием: 5, 12 (счёт дюжинами), 20 (следы такой системы сохранились во французском языке, например quatre-vingts, то есть буквально четыре-двадцать, означает 80), 40, 60 и др. При научных исследованиях и при вычислениях на современных вычислительных машинах часто применяется система С. с основанием 2 (см. Двоичная система счисления). У первобытных народов не существовало развитой системы С. Ещё в 19 в. у многих племён Австралии и Полинезии было только два числительных: один и два; сочетания их образовывали числа: 3 — два-один, 4 — два-два, 5 — два-два-один и 6 — два-два-два. О всех числах, больших 6, говорили: «много», не индивидуализируя их. С развитием общественно-хозяйственной жизни возникла потребность в создании систем С., которые позволили бы считать и о
бозначать всё большие совокупности предметов. Одной из наиболее древних систем С. является египетская иероглифическая нумерация, возникшая ещё за 2500—3000 лет до н. э. Это была десятичная непозиционная система С., в которой для записи чисел применялся только принцип сложения (числа, выраженные рядом стоящими цифрами, складываются). Специальные знаки имелись для единицы Для 10 000 был введён новый знак М. Тем не менее ионийская система С. оказалась непригодной уже для астрономических вычислений эпохи эллинизма, и греческие астрономы этого времени стали комбинировать алфавитную систему с шестидесятеричной вавилонской — первой известной нам системой С., основанной на позиционном принципе. В системе С. древних вавилонян, возникшей примерно за 2000 лет до н. э., все числа записывались с помощь
ю двух знаков: Современная десятичная позиционная система С. возникла на основе нумерации, зародившейся не позднее 5 в. в Индии. До этого в Индии имелись системы С., в которых применялся не только принцип сложения, но и принцип умножения (единица какого-нибудь разряда умножается на стоящее слева число). Аналогично строились старокитайская система С. и некоторые др. Если, например, условно обозначить число 3 символом III, а число 10 символом X, то число 30 запишется как IIIX (три десятка). Такие системы С. могли служить подходом к созданию десятичной позиционной нумерации. Десятичная позиционная система С. даёт принципиальную возможность записывать сколь угодно большие числа. Запись чисел в ней компактна и удобна для производства арифметических операций. Поэтому вскоре после возникновен ия десятичная позиционная система С. начинает распространяться из Индии на Запад и Восток. В 9 в. появляются рукописи на арабском языке, в которых излагается эта система С., в 10 в. десятичная позиционная нумерация доходит до Испании, в начале 12 в. она появляется и в других странах Европы. Новая система С. получила название арабской, потому что в Европе с ней познакомились впервые по латинским переводам с арабского. Только в 16 в. новая нумерация получила широкое распространение в науке и в житейском обиходе. В России она начинает распространяться в 17 в. ив самом начале 18 в. вытесняет алфавитную. С введением десятичных дробей десятичная позиционная система С. стала универсальным средством для записи всех действительных чисел.
Лит.: Кэджори ф.. История элементарной математики с указаниями на методы преподавания, пер. с англ., 2 изд., Од., 1917; Леффлер Е., Цифры и цифровые системы культурных народов в древности и в новое время, пер. с нем., Од., 1913; Выгодский М. Я., Арифметика и алгебра в древнем мире, 2 изд., М., 1967; Башмакова И. Г. и Юшкевич А. ГГ., Происхождение систем счисления, в кн.: Энциклопедия элементарной математики, кн. 1, М.—Л., 1951. И. Г. Башмакова. |