|
|
источник статьи: Большая Советская Энциклопедия |
Особая точка в математике. 1) Особая точка кривой, заданной уравнением F (x, у) = 0, — точка М0(х0, y0), в которой обе частные производные функции F (x, у) обращаются в нуль:
Если при этом не все вторые частные производные функции F (x, у) в точке М0 равны нулю, то О. т. называют двойной. Если наряду с обращением в нуль первых производных в точке М0 обращаются в нуль и все вторые производные, но не все третьи производные равны нулю, то О. т. называется тройной, и т.д. При исследовании строения кривой вблизи двойной О. т. важную роль играет знак выражения Если D > 0, то О. т. называется изолированной; например, у кривой у 2 — х 4 + 4x 2 = 0 начало координат есть изолированная О. т. (см. рис. 1). Если D < 0, то О. т. называется узловой, или точкой самопересечения; например, у кривой (x 2 + y 2 + a2)2 — 4a 2x 2 — a 4 = 0 начало координат есть узловая О. т. (см. рис. 2). Если D = 0, то О. т. кривой является либо изолированной, либо характеризуется тем, что различные ветви кривой имеют в этой точке общую касательную, например: а) точка возврата 1-го рода — различные ветви кривой расположены по разные стороны от общей касательной и образуют остриё, как у кривой у 2 — х 3 = 0 (см. рис. 3, a); б) точка возврата 2-го рода — различные ветви кривой расположены по одну сторону от общей касательной, как у кривой (у — x 2)2 — х 5 = 0 (см. рис. 3, б); в) точка самоприкосновения (для кривой у 2 — х 4 = 0 начало координат является точкой самоприкосновения; (см. рис. 3, в). Наряду с указанными О. т. имеется много других О. т. со специальными названиями; например, асимптотическая точка — вершина спирали с бесконечным числом витков (см. рис. 4), точка прекращения, угловая точка и т.д.
Лит. см. при ст. Дифференциальная геометрия. 2) Особая точка дифференциального уравнения — точка, в которой одновременно обращаются в нуль и числитель и знаменатель правой части дифференциального уравнения
где Р и Q — непреры вно дифференцируемые функции. Предполагая О. т. расположенной в начале координат и используя Тейлора формулу, можно представить уравнение (1) в виде
где P1(x, у) и Q1(x, у)— бесконечно малые по отношению к
Именно, если l1 ¹ l2 и l1l2 > 0 или l1 = l2, то О. т. есть узел; все интегральные кривые, проходящие через точки достаточно малой окрестности узла, входят в него. Если l1 ¹ l2 и l1l2 < 0, то О. т. есть седло; в окрестности седла четыре интегральные кривые (сепаратрисы) входят в О. т., а между ними располагаются интегральные кривые типа гипербол. Если l1,2 = a ± i b, a ¹ 0 и b ¹ 0, то О. т. есть фокус; все интегральные кривые, проходящие через точки достаточно малой окрестности фокуса, представляют собой спирали с бесконечным числом витков в любой сколь угодно малой окрестности фокуса. Если, наконец, l1,2 = ± i b, b ¹ 0, то характер О. т. не определяется одними линейными членами в разложениях Р (х, у) и Q (x, у), как это имело место во всех перечисленных случаях; здесь О. т. может быть фокусом или центром, а может иметь и более сложный характер. В окрестности центра все интегральные кривые являются замкнутыми и содержат центр внутри себя. Так, например, точка (0, 0) является узлом для уравнений у ' = 2у/х (l1 = 1, l2 = 2; см. рис. 5, а) и y ' = у/х (l1 = l2 = 1; см. рис. 5, б), седлом для уравнения у' = —у/х (l1 = —1, l2 = 1; см. рис. 6), фокусом для уравнения у' = (х + у) / (х — у) (l1 = 1 — i, l2 = 1 + i; см. рис. 7) и центром для уравнения у' = —x / y (l1 = —i, l2 = i; см. рис. 8). Если Изучение О. т. дифференциальных уравнений, т. е. по существу изучение поведения семейств интегральных кривых в окрестности О. т., составляет один из разделов качественной теории дифференциальных уравнений и играет важную роль в приложениях, в част ности в вопросах устойчивости движения (работы А. М. Ляпунова, А. Пуанкаре и др.).
Лит. см. при ст. Дифференциальные уравнения. 3) Особая точка однозначной аналитической функции — точка, в которой нарушается аналитичность функции (см. Аналитические функции). Если существует окрестность О. т. a, свободная от других О. т., то точку а называют изолированной О. т. Если а — изолированная О. т. и существует конечный
точка z = 0 является полюсом порядка р, для функции точка z = 0 является существенно особой точкой. На границе круга сходимости степенного ряда должна находиться по крайней мере одна О. т. функции, представляемой внутри этого круга данным степенным рядом. Все граничные точки области существования однозначной аналитической функции (естественной гра ницы) являются О. т. этой функции. Так, все точки единичного круга | z | = 1 являются особыми для функции
Для многозначной аналитической функции понятие «О. т.» более сложно. Помимо О. т., в отдельных листах римановой поверхности функции (то есть О. т. однозначных аналитических элементов) всякая точка ветвления также является О. т. функции. Изолированные точки ветвления римановой поверхности (то есть такие точки ветвления, что в некоторой их окрестности ни в одном листе нет других О. т. функции) классифицируются следующим образом. Если а — изолированная точка ветвления конечного порядка и существует конечный Всякая О. т., кроме устранимой, является препятствием при аналитическом продолжении, т. е. аналитическое продолжение вдоль кривой, проходящей через неустранимую О. т., невозможно.
Лит. см. при ст. Аналитические функции. ![]() Рис. 5 к ст. Особая точка. ![]() Рис. 8 к ст. Особая точка. ![]() Рис. 6 к ст. Особая точка. ![]() Рис. 4 к ст. Особая точка. ![]() Рис. 1 к ст. Особая точка. ![]() Рис. 10 к ст. Особая точка. ![]() Рис. 3 к ст. Особая точка. ![]() Рис. 9 к ст. Особая точка. ![]() Рис. 7 к ст. Особая точка. ![]() Рис. 2 к ст. Особая точка. |