Российские универсальные энциклопедии
на главную страницу

   
источник статьи:
Большая Советская
Энциклопедия


Российские универсальные энциклопедии
Брокгауз-Ефрон и Большая Советская Энциклопедия
объединенный словник





Обобщённые функции, математическое понятие, обобщающее классическое понятие функции. Потребность в таком обобщении возникает во многих физических и математических задачах. Понятие О. ф., с одной стороны, даёт возможность выразить в математически корректной форме такие идеализированные понятия, как плотность материальной точки (пространственная), плотность простого или двойного слоя, интенсивность мгновенного источника и т.д. С другой стороны, в понятии О. ф. находит отражение тот факт, что реально нельзя измерить значение физич. величины в точке, а можно измерять лишь её средние значения в достаточно малых окрестностях данной точки. Таким образом, О. ф. служат удобным аппаратом для описания распределений различных физических величин. Поэтому в иностранной литературе О. ф. называют распределениями.

  О. ф. были введены впервые в конце 20-х гг. 20 в. П. Дираком в его исследованиях по квантовой механике, где он систематически использует понятие дельта-функции и её производных. Основы математической теории О. ф. были заложены С. Л. Соболевым в 1936 при решении Коши задачи для гиперболич. уравнений, а в послевоенные годы французский математик Л. Шварц дал систематическое изложение теории О. ф. В дальнейшем теорию О. ф. интенсивно развивали многие математики, главным образом в связи с потребностями математической физики. Теория О. ф. имеет многочисленные применения и всё шире входит в обиход физика, математика и инженера.

  Формально О. ф. определяются как линейные непрерывные функционалы над тем или иным линейным пространством о сновных функций j(x). Основным пространством функций является, например, совокупность бесконечно дифференцируемых финитных функций, снабженная надлежащей сходимостью (или, точнее, топологией). При этом обычные локально суммируемые функции f (x) отождествляются с функционалами (регулярными О. ф.) вида

(f, j) = òf (x)j(x) dx.     (1)

  Произвольная О. ф. f определяется как функционал f’, задаваемый равенством

(f¢, j) = ‑ (f, j¢).     (2)

  При таком соглашении каждая О. ф. бесконечно дифференцируема (в обобщённом смысле). Равенство (2) в силу (1) есть не что иное, как обобщение формулы интегрирования по частям для дифференцируемых в обычном смысле функций f (x), так что в этом случае оба понятия производной совпадают.

  Сходимость на (линейном) множестве О. ф. вводится как слабая сходимость функционалов. Оказывается, что операция дифференцирования О. ф. непрерывна, а сходящаяся последовательность О. ф. допускает почленное дифференцирование бесконечное число раз.

  Вводятся и другие операции над О. ф., например свёртка функций, Фурье преобразование, Лапласа преобразование. Теория этих операций приобретает наиболее простую и законченную форму в рамках понятия О. ф., расширяющих возможности классического математического анализа. Поэтому использование О. ф. существенно расширяет круг рассматриваемых задач и к тому же приводит к значительным упрощениям, автоматизируя элементарные операции.

Примеры. 1) d-функция Дирака:

(d, j) = j(0),

  описывает плотность массы (заряда) 1, сосредоточенной в точке х = 0, единичный импульс.

2) q (x) — функция Хевисайда: q(x) = 0, х £ 0, q(x) = 1, x > 0, q' = d;

  производная от неё равна единичному импульсу.

  3) —d' — плотность диполя момента 1 в точке х = 0, ориентированного вдоль оси х.

  4) mds — плотнос ть простого слоя на поверхности S с поверхностной плотностью m:

5)  — плотность двойного слоя на поверхности S с поверхностной плотностью момента n диполей, ориентированных вдоль направления нормали n:

.

  6) Свёртка

  — ньютонов потенциал с плотностью f, где f — любая О. ф. [например, из 1), 3), 4) и 5)].

  7) Общее решение уравнения колебаний струны

  задаётся формулой

u (х, t) = f (x + at) + g (x - at),

  где f и g — любые О. ф.

 

  Лит.: Дирак П. А. М., Основы квантовой механики, пер. с англ., М.—Л., 1932; Soboleff S., Méthode nouvelle á resoudre le probléme de Cauchy pour les équations lineaires hyperboliques normales, «Математический сборник», 1936, т. 1 (43), № 1 (резюме на рус. яз.); Schwartz L., Théorie des distributions, t. 1—2, P., 1950—51; Гельфанд И. М., Шилов Г. Е., Обобщённые функции и действия над ними, 2 изд., М., 1959; Владимиров В. С., Уравнения математической физики, 2 изд., М., 1971.

  В. С. Владимиров.








ЭнциклопедиЯ

© gatchina3000.ru, 2001-2012
при использовании материалов сайта, гиперссылка обязательна