Российские универсальные энциклопедии
на главную страницу

   
источник статьи:
Большая Советская
Энциклопедия


Российские универсальные энциклопедии
Брокгауз-Ефрон и Большая Советская Энциклопедия
объединенный словник





Карбиды, соединения углерода с электроположительными элементами, главным образом с металлами и некоторыми неметаллами По типу химической связи К. могут быть подразделены на три основные группы: ионные (или солеобразные), ковалентные и металлоподобные. Некоторые К. принадлежат к нестехиометрическим соединениямтвёрдым веществам переменного состава, не отвечающего стехиометрическим законам.

  Ионные К. образуются сильно электроположительными металлами; они содержат катионы металлов и анионы углерода. К ним относятся ацетилениды с анионами [С º С]2-, которые могут быть представлены как продукты замещения водорода в ацетилене C2H2 металлами, а также метаниды — продукты замещения металлами водорода в метане CH4.

Табл. 1 — Свойства некоторых ионных карбидов
Карбид Кристалличе-
ская структура
Плот-
ность, г/см3
Температура плавления, °С Теплота образо-
вания, ккал/моль*
Удельное объёмное электрическое сопро-
тивление, мком×см
  РомбическаяГексагональная Гексагональная ТетрагональнаяТетрагональнаяТетрагональнаяТетрагональнаяТетрагональнаяКубическаяРомбоэдрическая 1,301,601,622,072,213,725,355,562,442,95 —800 (разл.)——23002000 (разл.)2360229024002100 14,2— 4,1—21±514,1±2,0 12,l±4,038,0—28,049,5 ——————45601,1.106

*1 ккал/моль = 4,19 кдж/моль.

Табл. 2. — Свойства некоторых металлоподобных и ковалентных карбидов 0,044
Карбид Границы области однородности, ат. Кристалличе-
ская струк
тураа)
Плот-
ность, г/см3
Темпе
ратура плавле-
ния, °С
Теплота образо-
вания, ккал/мольд)
Коэффициент терми-
ческого рас-
ширения (20-1800 °С)1/1°С×106
Теплопровод-
ность, кал/см×сек×°Се)
Удельное объемное элетрическое соп-

ротивление мком×см
Работа выхода элек-
роновж) jэфф, эв
Микро-
твер
дость Гн/м2
Модуль упругос-
ти Гн/м2
TiC 37-50 КГЦ 4,94 3150 43,9 8,5 0,069 52,5 4,20 31 460
ZrC 38-50 КГЦ 6,60 3420 47,7 6,95 0,09 50 4,02 29 550
HfC 36-50 КГЦ 12,65 3700 55,0 6,06 0,07 45 3,95 28,5 359
VC 40-47 КГЦ 5,50 2850 24,1 7,2 0,094 76 4,07 25,5 431
nвc 41,2-50 КГЦ 7,80 3600 33,7 6,5 42 3,93 20,5 540
TaC 42,2-49 КГЦ 14,5 3880 34,0 8,29 0,053 24 3,82 16 500
Cr3C2 Ромбич. 6,74 1895 8,1 11,7 0,046 75 13,3 380
Mo2C 31,2-33,3 ГПУ 9,06 2580 11,0 7,8 0,076 71 15 544
W2 C 29,5-33,3 ГПУ 17,13 2795 7,9 0,072 75,5 4,58 14,5 428
WC Гексагон.< /td> 15,70 2785 9,1 5,2 0,083 19,2 18 722
Fe3C Ромбич. 7,69 1650 —5,4 10,8
SiC Гексагон. 3,22 2827б) 15,8 4,7в) 0,24 >0,13×106 33,4 386
B4C 17,6-29,5г) Ромбоэдр. 2,52 2250б) 13,8 4,5в) 0,29 9×105 49,5 480

а) КГЦ — кубическая гранецентрированная, Ромбич. — ромбическая. Ромбоэдр. — ромбоэдрическая, ГПУ — гексагональная плотноупакованная, Гекс. — гексагональная. б) Разлагается. в) 20—1000 °С, г) % по массе, д) 1 кал/моль = 4,19 кдж/моль. е) 1 кал/см×сек×°С = 419 вт/(м×К). ж) При 1800 K.

Табл. 3. — Механические свойства карбидов

Карбид Твёрдость Н, Гн/м2, при температуре, °С Предел прочности при растяжении, Мн/м2, при температуре °С Предел прочности при сжатии, Мн/м2, при т емпературе °С Модуль упругости, Гн/м2, при температуре °С
20 1230 1730 20 1230 1730 20 1230 1730 20 730 1230
TiC 31,0 1,6 0,3 560 200 90 1350 470 260 460 420 400
ZC 29,0 2,0 1,3 300 100 1700 300 550 520 500
NbC 20,5 0,75 0,28 1400 400 200 540 500 470
WC 18,0 0,9 0,4 5 2700 600 100 722 690 600
SiC 33,4 2,2 0,9 180 230 800 400 160 386 373 350

 

  Ацетиленидами являются К. щелочных металлов (Li2C2, Na2C2 и пр.), магния MgC2 и щелочноземельных металлов (CaC2, SrC2 и др.), высшие К. редкоземельных металлов (YC2, LaC2 и др.) и актиноидов (ThC2 и пр.). С уменьшением ионизационного потенциала металла в этой группе возрастает склонность к образованию «поликарбидов» со сложными анионами из атомов углерода (MeC8, MeC16, MeC24 и др.). Эти К. имеют графитоподобные решётки, в которых между слоями из атомов углерода расположены атомы металла. Ионные К . ацетиленидного типа, например карбид кальция, при взаимодействии с водой или разбавленными кислотами разлагаются с выделением ацетилена (или ацетилена в смеси с др. углеводородами и иногда — водородом). Cu2C2, Ag2C2 и др. взрываются при ударе, обладают невысокой химической устойчивостью, легко разлагаются и окисляются при нагревании. К метанидам относятся Be2C, Al4C3, которые легко гидролизуются с выделением метана (табл. 1).

  Ковалентные К., типичными представителями которых являются К. кремния и бора, SiC и B4C (правильнее B12C3), отличаются прочностью межатомной связи; обладают высокой твёрдостью, химической инертностью, жаропрочностью; являются полупроводниками. Структура некоторых таких К. (например, SiC) близка к структуре алмаза. Кристаллические решётки этих К. представляют собой гигантские молекулы (см. Бора карбид, Кремния карбид).

  Металлоподобные К. обычно построены как фазы внедрения атомов углерода в поры кристаллических решёток переходных металлов. Природа металлоподобных К., как фаз внедрения, обусловливает их высокую твёрдость и износостойкость, практическое отсутствие пластичности при обычных температурах, хрупкость и относительно невысокие прочие механические свойства. К. этой группы — хорошие проводники электричества, откуда и название — «металлоподобные». Многие из них — сверхпроводники (например, температуры перехода в сверхпроводящее состояние составляют: Nb2C, 9,18 К; NbC, 8—10 К; MO2C, 12,2 К; MoC, 6,5 К). Важными для техники свойствами обладают взаимные сплавы К. TiC, ZrC, HfC, NbC и TaC. Так, композиции, состоящие из 25% HfC и 75% TaC, имеют наиболее высокую температуру плавления (около 4000 °С) из всех тугоплавких металлов и веществ. Металлоподобные К. обладают большой химической устойчивостью в кислотах, меньшей — в щелочах. При их взаимодействии с H2, O2, N2 и пр. образуются гидридокарбиды, оксикарбиды, карбонитриды, также представляющие фазы внедрения и обладающие свойствами, близкими к свойствам К. К металлоподобным К. относятся также соединения с более сложными структурами: Mn3C, Fe3C, Co3C, Ni3C (табл. 2).

  Получение и применение. Распространёнными методами получения К. являются нагревание смесей порошков металлов и угля в среде инертного газа или восстановительного газа; сплавление металлов с одновременной карбидизацией (MeO + С ® MeC + CO) при температурах 1500—2000° С и др. Для получения изделий из порошков К. используют порошковую металлургию; отливку расплавленных К. (обычно под давлением газово й среды для предотвращения разложения при высоких температурах); диффузионное науглероживание предварительно подготовленных изделий из металлов и неметаллов; осаждение в результате реакций в газовой фазе (особенно при получении карбидных волокон); плазменную металлургию. Обычные механические методы обработки изделий из металлоподобных К. и высокопрочных карбидно-металлических сплавов оказываются непригодными и заменяются абразивной, ультразвуковой обработкой, электроискровым способом и др.

  Из ионных К. важное значение в технике как источник ацетилена имеет карбид кальция. Широко используются ковалентные и металлоподобные К. Так, тугоплавкие К. применяют для изготовления нагревателей электропечей сопротивления, защитных чехлов для термопар, тиглей и т.д. На основе сверхтвёрдых и износостойких К. производят металло-керамические твёрдые сплавы (вольфрамокобальтовые и титановольфрамовые), а также абразивы для шлифования и доводки (особенно SiC и B4C). К. входят в состав жаропрочных и жаростойк их сплавов — керметов, в которых твёрдые, но хрупкие К. цементированы вязкими, но достаточно тугоплавкими металлами. К. железа Fe3O образует в железоуглеродистых сплавах (чугунах и сталях) так называемую цементитную фазу — твёрдую, но очень хрупкую и непластичную (см. Цементит). Высокая химическая стойкость К. используется в химическом машиностроении и химической промышленности для изготовления трубопроводов, насадок, облицовки реакторов. Металлическая или полупроводниковая проводимость, хорошие термоэмиссионные свойства, способность переходить в сверхпроводящее состояние — для изготовления резисторов, различных элементов полупроводниковых устройств, в составе электроконтактов, магнитных материалов, термокатодов в электронике.

 

  Лит.: Самсонов Г. В., Тугоплавкие соединения. Справочник по свойствам и применению, М., 1963; Косолапова Т. Я., К арбиды, М,, 1968; Тугоплавкие материалы в машиностроении. Справочник, под ред. А. Т. Туманова и К. И. Портного, М., 1967; Особо тугоплавкие элементы и соединения. Справочник, М., 1969; Тугоплавкие карбиды, [Сборник], под ред. Г. В. Самсонова, К., 1970.

  Г. В. Самсонов, К. И. Портной.








ЭнциклопедиЯ

© gatchina3000.ru, 2001-2012
при использовании материалов сайта, гиперссылка обязательна